Analysis of Types of Oscillations in Goodwin's Model of Business Cycle # A. Antonova Management and Economics Institute, National Aviation University, Kyiv, Ukraine ## S. Reznik Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine ### M. D. Todorov Faculty of Applied Mathematics & Computer Science, Technical University of Sofia, Bulgaria We study numerically the properties of nonlinear oscillations of Goodwin's model of business cycle [1] $$\begin{cases} \epsilon \dot{y}(t) + (1-\alpha)y(t) = \varphi(\dot{y}(t-\theta)) + l(t) + \beta(t), & t > 0 \\ y(t) = \phi(t), & -\theta \le t \le 0. \end{cases}$$ Here y(t) is income, $\epsilon^{-1} > 0$ – the adjustment coefficient, α – the marginal propensity to consume, $0 \le \alpha \le 1$, $\phi(\dot{y}(t))$ – the induced investment function, θ is a lag in the investment function, l(t) is autonomous investment, and $\beta(t)$ is autonomous consumption, $$\phi(z) = \begin{cases} \phi_+, & z > \kappa_1 \phi_+ \\ \kappa z, & \kappa_1 \phi_- \le z \le \kappa_1 \phi_+ \\ \phi_-, & z < \kappa_1 \phi_- \end{cases}$$ κ is the acceleration coefficient, ϕ_{-} and ϕ_{+} are upper and lower limits of ϕ . In simulating this model on an analog computer [2] was indicated the existence of Goodwin's limit cycle solution with a period much greater than θ and an infinite number of limit cycle solutions with periods θ , $\theta/2$, $\theta/3$,.... Our calculations show that such cycles may be caused by high-frequency oscillations of the initial function $d\phi(t)/dt$. We have shown also that Goodwin's limit cycle solutions exist only in a limited range of θ , $0 \le \theta \le \theta_{\text{max}}$. ### References - [1] R.M. Goodwin, *Econometrica* (1951) **19**, 1–17. - [2] R. H. Strotz, J.C. McAnulty, J.B. Naines, Jr. (1953) Econometrica, 21, 390–411.