Analysis of Types of Oscillations in Goodwin's Model of Business Cycle

A. Antonova

Management and Economics Institute, National Aviation University, Kyiv, Ukraine

S. Reznik

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

M. D. Todorov

Faculty of Applied Mathematics & Computer Science, Technical University of Sofia, Bulgaria

We study numerically the properties of nonlinear oscillations of Goodwin's model of business cycle [1]

$$\begin{cases} \epsilon \dot{y}(t) + (1-\alpha)y(t) = \varphi(\dot{y}(t-\theta)) + l(t) + \beta(t), & t > 0 \\ y(t) = \phi(t), & -\theta \le t \le 0. \end{cases}$$

Here y(t) is income, $\epsilon^{-1} > 0$ – the adjustment coefficient, α – the marginal propensity to consume, $0 \le \alpha \le 1$, $\phi(\dot{y}(t))$ – the induced investment function, θ is a lag in the investment function, l(t) is autonomous investment, and $\beta(t)$ is autonomous consumption,

$$\phi(z) = \begin{cases} \phi_+, & z > \kappa_1 \phi_+ \\ \kappa z, & \kappa_1 \phi_- \le z \le \kappa_1 \phi_+ \\ \phi_-, & z < \kappa_1 \phi_- \end{cases}$$

 κ is the acceleration coefficient, ϕ_{-} and ϕ_{+} are upper and lower limits of ϕ .

In simulating this model on an analog computer [2] was indicated the existence of Goodwin's limit cycle solution with a period much greater than θ and an infinite number of limit cycle solutions with periods θ , $\theta/2$, $\theta/3$,.... Our calculations show that such cycles may be caused by high-frequency oscillations of the initial function $d\phi(t)/dt$. We have shown also that Goodwin's limit cycle solutions exist only in a limited range of θ , $0 \le \theta \le \theta_{\text{max}}$.

References

- [1] R.M. Goodwin, *Econometrica* (1951) **19**, 1–17.
- [2] R. H. Strotz, J.C. McAnulty, J.B. Naines, Jr. (1953) Econometrica, 21, 390–411.